
Interactive t-a-p Analysis
David Eubanks

Table of contents

1 Introduction 1
1.1 Basic Functions . 2
1.2 Advanced Functions . 2

2 Load Data 3

3 Simulate Data 7
3.1 Exploring Binary Mixtures . 8
3.2 Feasibility Study . 10
3.3 Additional Parameters . 11

4 The t-a-p Solver 12
4.1 Interpreting Results . 14

5 Ordinal Analysis 19

6 More Parameters 20

1 Introduction

The R programming language has been extended to include the creation of interactive apps
using a framework called Shiny. You’ll need to install the libray(shiny) to run it, with
install.packages("shiny").

Two separate interactive applications are available for the t-a-p model. One of them is in-
cluded in the tapModel R package. Once the package is installed, you can open the app
with tapModel::launchApp(). This is a limited version of the app that does not provide
for Bayesian analysis. The full version of the app can be installed as a stand-alone R project
from github. There are instructions there on installing it. To take advantage of the Bayesian

1

https://shiny.posit.co/r/getstarted/shiny-basics/lesson1/index.html
https://github.com/stanislavzza/t-a-p-rater-agreement

estimation methods, you’ll need to install additional R packages and tools. The Bayesian
estimation is done with a Markov chain Monte Carlo (MCMC) process of sampling from a
probability distribution. For that, the Stan programming language is used, with the stancmdr
package. That link has installation instructions. The library LaplacesDemon is also needed
to compute the modes of distributions.

1.1 Basic Functions

The simplest way to get started is with the tapModel library. It provides these functions:

• Load data from comma-delimited value (CSV) files that are formatted as

– Outcome ratings in columns, where multiple traits have rating data, one subject
per row, and multiple traits per subject. For example if a jury of reviewers rates
a musical performance on style, technique, and musicality, each performer would
have multiple rows, each with those three columns.

– Raters in columns, where the same type of jury data can be reformatted to have a
Category column (style, technique, musicality), and each rater appears as a single
column. In this format each subject only appears on a single row.

– Long format, where the subject ID, optional category, and rating appear as the
three columns of the CSV.

• Simulate a data set by specifying the t-a-p parameters and sample sizes.

• Estimate t-a-p parameters from a (simulated or real) data set.

• Estimate ordinal t-a-p parameters from a data set. This assumes that the rating scale
is sorted alphabetically in the correct order. For example, a numerical survey response
scale is usually in the right order, but the labels may not be (“neutral” doesn’t sort in
the middle of “strongly agree” and “strongly disagree”). You may need to adjust the
rating labels accordingly, e.g. “1 - strongly disagree”, … “5 - strongly agree”.

1.2 Advanced Functions

If you launch the app from the github source code and have the stancmdr package installed,
some additional features become available. These derive from using Bayesian modeling written
in the Stan programming language to make parameter estimates from maximum likelihood
models built to reflect variations of the t-a-p model. Markov chain Monte Carlo (MCMC)
methods are used to explore the model’s probability distribution, which you can then see
within the app. This is advantageous because a parameter estimate may have a bimodal
distribution when parameters are not cleanly identifiable. In those cases relying on an average
for a parameter estimate is a mistake.

2

https://mc-stan.org/cmdstanr/articles/cmdstanr.html
https://mc-stan.org/cmdstanr/articles/cmdstanr.html
https://github.com/stanislavzza/t-a-p-rater-agreement
https://mc-stan.org/
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

Another advantage of MCMC’s numerical simulation is that the basic t-a-p model can be
extended to include more parameters without being rigidly tied to the binomial mixture model.
Finally, the simple methods used for three-parameter estimation will fail when confronted with
many parameters. In the interactive application, there is limited ability to add parameters.
For complete flexibility, Stan scripts are provided in the chapter on hierarchical models.

The following sections describe the functionality of both the package app and the stand-alone
version, with the latter’s additional features marked as “advanced.”

2 Load Data

The minimum data required to get started is to have a set of discrete classifications (text
or numerical) that identifies a unique subject for each rating. Because the ordinal analysis
assume that ratings will sort in a reasonable way, you may want to reformat rating responses
accordingly. For example, a 1-5 scale will sort appropriately, but “strongly disagree” to “neu-
tral” to “strongly agree” will not. In that case, you can add a number in front, like “1-strongly
disagree” to force the sorting to be correct.

In practice, the number of unique ratings is usually small, like a 1-5 scale for a product rating
or rubric for an educational goal. It’s also possible to include a dimension as a column. For
example, a survey to evaluate a service might include a rating for promptness, friendliness,
and overall satisfaction. An educational rubric for student writing might include language
correctness, style, and audience awareness. This can be accommodated within the data loading
process, so it’s easy to switch from analyzing one aspect (dimension) of the data to another
without exiting.

3

Figure 1: Loading data where ratings are in columns by dimension and subjects are repeated
as necessary.

In the app, the dimension, or category, of the rating is called an outcome or objective. The
first selection under Type of Data illustrates this data shape. In this case you only need to
specify which column is the (required) subject identifier. This selection would be used, for
example, if you had customer survey data where each row corresponded to one store location,
which was identified by a unique name or number. The columns would correspond to the
questions on the survey, with the numerical or text responses under them.

4

Figure 2: Loading data where the dimension (category, objective) is found in a single column
and each rater has a column.

The second data type allows for raters to each have their own column. For the purposes of the
analysis done in the app, the raters don’t really need to be identified uniquely in the columns.
It only matters if you do a hierarchical analysis where each rater gets an individual accuracy
parameter. See the chapter on hierarchical models for more on that. It’s too complicated for
the app. It’s required that all ratings for a subject are found in a single row in this format, so
the subject ID is optional. The category column is also optional, and will be blank if there’s
only one type of rating being done.

5

Figure 3: Loading data in long format

The third option is for “long” data, where there are only three columns: one for a subject ID,
one for a dimension (objective, outcome), and one for the rating. Subject IDs will be repeated,
as will the values of the dimension column. If there is only one dimension, that column still
needs to exist, but it can be constant.

Once the data has loaded, you’ll see a summary of the columns. I’ll use the wine ratings that
are included in the tapModel package to illustrate.

6

Figure 4: A data summary of the loaded ratings

This summary can be used to check that the columns have been loaded correctly. Here we
can see that the Rating column has four unique values, which is correct, and that there are
549 matched ratings. Here “matched” means that the subject was rated at least twice, not
that the ratings themselves had the same value. Unmatched ratings–those for which a subject
only has a single rating–cannot be used for the statistics. The SubjectID__ column is added
automatically, even if your data doesn’t have a subject ID. The number of unique values
should correspond to the number of subjects in your data. The Action column shows which
columns are kept for the analysis. If the data loader can’t tell what the column is for, it will
be discarded. This may be an indication that you chose the wrong loading specification.

3 Simulate Data

The t-a-p model can be used to generate data, given specifications for the parameters. This
is useful for testing that the estimation algorithm works as intended, and as an interactive
means to better understand the binomial mixture distributions that result from the t-a-p
model assumptions.

The parameters available to set are:

• Number of subjects. Not all values are available since the slide skips some values.

• Number of raters, the same for each subject

• 𝑡, the proportion of subjects that are in reality Class 1

• 𝑎, the average rater accuracy as defined in the t-a-p model

• An option to allow two parameters for accuracy, 𝑎0 and 𝑎1. See the chapter on the
Kappa Paradox for more on that idea.

• A checkbox to automatically set 𝑝 = 𝑡, the unbiased rater condition.

• 𝑝, the proportion of inaccurate ratings assigned to Class 1

7

• If the option to expand 𝑎 into two parameters is checked, another option to do the same
for 𝑝 will appear.

• Data type: the “exact” option attempts to exactly produce the binomial mixture distri-
bution, and the “random” option instead samples from the distribution.

The last option listed above provides a way to understand the effect of sampling on the
simulated data. Statistical methods often assume that a true probability distribution exits,
and that data points are drawn (“sampled”) from that distribution. The smaller the data set
(sample size), the more random deviation there will be in the empirical distribution of the
data (like a histogram of values) and the true distribution. The idea of bootstrapping is to
repeatedly sample from a distribution to see what results.

3.1 Exploring Binary Mixtures

If you’re starting to use the resources on this site to analyze real data sets, it’s a good idea
to develop an intuition for the assumptions. The decision tree that starts with the true class,
proceeds to accuracy and then randomness, results in a particular pattern of ratings: the
collection of true Class 1 subject ratings will look different from the Class 0 collection as long
as accuracy is greater than zero. On average, there should be more Class 1 ratings for true
Class 1 subjects, and the gap between the average Class 1 and Class 0 ratings will increase as
accuracy increases.

To see this effect, increase the sample size and number of raters (top two sliders) to the
maximum, leave the rest of the sliders alone and generate the data.

8

https://en.wikipedia.org/wiki/Bootstrapping

Figure 5: Data with large number of raters and all parameters = .5

The table at the top of the display gives statistics for the model specification, which may vary
from the actual samples if the Random option is chosen. These correpond to the statistics
found in the Kappa chapter. The class proportions in the first row are the 𝑐 and ̄𝑐 statistics,
the match rates are 𝑎2 and ̄𝑎2, and total match rate is the sum. These last two rows will be
different calculations if individual accuracies are used. The random match rate is 𝑚𝑟 = 𝑝2 + ̄𝑝2

unless the individual parameters are used. The mixed rate is 𝑚𝑥.

The shape of the rating distribution is a histogram of the counts per subject of Class 1 ratings
per subject. The true Class 1 cases comprise the right bump, since accurate ratings add to
the number for each subject half the time (since 𝑎 = .5). On average, true Class 1 cases are
receiving 75/100 ratings of Class 1. The true Class 0 cases–the left bump in the histogram–
only ever receive inaccurate ratings of Class 1. The difference between the two peaks is 50, and
that’s because 50 = .5(100), or rater accuracy times the number of raters. The more accurate

9

the raters are, the further the two bumps will be apart.

If you dial in different specifications for the three parameters, you’ll quickly develop an intuition
for how these models work. For example what happens if we leave everything the same, but
change to 𝑡 = .8? You should see that changing the truth parameter only increases the pile
of Class 1 ratings; it doesn’t change where they are. This is the “mixture” parameter in the
binomial mixture. We already know that 𝑎 represents the average amount of Class 1 votes
between the two bumps in the histogram, but trying out different values of 𝑎 will allow you to
visualize that.

The default settings of .5 mean that 𝑡 = 𝑝, the unbiased rater case (see the chapter on Kappa
for more on that). If you change the sliders so that 𝑡 ≠ 𝑝, you can see the effect of bias on the
rating distribution.

For all of these cases, you can switch to the next tab in the app (the one labeled “t-a-p”) to see
if the solver can recover the correct values of the parameters you specified at data generation.

3.2 Feasibility Study

The data simulator can be used for a feasibility study (see power analysis). Suppose a group
of graders is to read and evaluate student writing samples as passing or failing. If there are
anticipated to be 21 subjects, how many raters for each would we need to be able to assess rater
accuracy with a t-a-p model? If we guess that about 80% of the students should be passing,
and–based on other data–that rater accuracy is around 50%, we can try varying numbers of
raters to see how well the parameters can be recovered.

10

https://en.wikipedia.org/wiki/Power_(statistics)

Figure 6: Simulated data with 21 subjects, two raters each, 80% true Class 1 rate, and 50%
accuracy. The “unbiased” box checked means that p = t = .8. The data set is
generated without sampling error in this case.

It’s less obvious in this distribution how we might separate out the Class 1 from Class 0 cases,
and the question is whether or not the solver can recover the parameters. If not, then it’s
worth considering the design of the anticipated study.

3.3 Additional Parameters

As discussed in the chapter on the Kappa Paradox, it’s possible to expand the t-a-p model to
include 𝑎 and 𝑝 parameters that are estimated separately for Class 1 and Class 0 cases. These
parameters can be set by using the options

• Use a0, a1, which creates the two sliders and unlocks the next option:

11

• Use p0, p1, which creates those two sliders

With that much flexibility over the probability distribution, it’s possible to create non-
identifiable data sets, where the Class 0 mean is larger than the Class 1 mean. In those cases
there will effectively be two solutions to the expanded t-a-p model, one with the Class 1 mean
to the right (as normal) and one to the left. Any use of the full parameter set should be
assumed to be non-identifiable, no matter where the class means lie. Analyzing these models
requires the Bayesian methods included in the advanced features. You can, however, generate
data from the complex model and then see how the three-parameter t-a-p solver does at
finding a plausible solution.

4 The t-a-p Solver

The third tab on the application takes the data set that has been loaded or simulated and
estimates the three model parameters from it. I’ll use the wine ratings to illustrate.

Figure 7: The t-a-p solver applied to the wine ratings, where Class 1 is a rating of 1

12

The options on the page are:

• Ratings: choose which dimension (if there are multiple ones) to use for the ratings. See
the description of the data loading tab for more on what is meant by “dimension” here.

• inclass range: Of the values in the ratings column, which ones should be considered Class
1? Class 1 will be referred to as the “inclass” sometimes.

• outclass range: Which values are Class 0? You can omit values if you want, but it
defaults to the complementary set of non-inclass values.

• Show combined distribution. By default, the top plot will show the total distribution
of Class 1 ratings over the subjects. If you uncheck the box, the plot will separate the
inclass from the outclass distribution.

• Number of raters. A real data set can have a different number of raters per subject.
The plot can’t easily show all that data, so you’ll have to pick which number of raters
is shown on the plot. If the wine data had only three raters for some of the wines, we
could use this selector to flip back and forth between the four-times-rated wines and
three-times-rated wines.

• Scale density by t. Recall that the binomial mixture’s mixing parameter is 𝑡. If this box
is checked and the “Show combined distribution” box is unchecked, the individual Class
1 (inclass) and Class 0 (outclass) distributions will be shown as scaled appropriately for
𝑡. If you want to see the shape of the distribution, sometimes it’s useful not to scale it
by 𝑡.

• LL x-axis. The solver uses maximum likelihood estimation, which produces a log like-
lihood (LL) value for each combination of parameters. The second plot shows the log
likelihood graph near the solution, and you can use the radio button to choose which
parameter you want to inspect.

• Compute MCMC (slow). This is an advanced function, only available in the full appli-
cation. It uses Bayesian estimation to create a distribution of the likelihood for each
parameter. This adds another plot and augments the second plot with a kind of confi-
dence band.

Clicking on the Compute button generates the results. If you enable the MCMC box after
computation, you’ll need to run it again to execute the Bayesian analysis.

13

4.1 Interpreting Results

Figure 8: Modeled distribution (line) compared to empirical distribution (lollipops)

The top display after clicking Compute gives the estimates for the three parameters at the top
of a plot. For the wine ratings with Class 1 = {1} and Class 0 = {2, 3, 4} is shown here. That
choice is asking the question “how well can the judges distinguish the lowest quality wines
from the rest?” The estimate is that 27% of the wines are actually Class 1 (a rating of 1),
that rater accuracy is 54%, and that when random assignments are made, Class 1 is chosen
22% of the time. Since 𝑡 = .27 is close to 𝑝 = .22, the ratings are nearly unbiased in the sense
discussed in the Kappa chapter.

The dashed line in the plot is the expected distribution of Class 1 ratings per subject. The
vertical black lines with dots (lollipops) show the actual (empirical) distribution from the data.
The extent to which these two agree is a measure of model fit. In this example, there are four
raters for each subject (each wine), so there are a maximum of four ratings of Class 1 (the
lowest quality rating of 1, as we specified with the selectors). The agreement between model
and data looks better for the 0 and 1 counts than for the 2, 3, and 4 counts, implying that the
model fit is better for higher ratings (Class 0).

We can separate the model’s distributions for the two classes by unchecking the box “show
combined distribution.” The box “scale density by t” is checked as well.

14

Figure 9: Modeled distributions of the two classes

The outclass (Class 0) is modeled by the t-a-p coefficients with a spike at zero, meaning that
by far the mostly likely number of Class 1 ratings in cases where the subject (the wine) is
truly Class 0 is that no Class 1 ratings are assigned by the four raters. Translating that back
to the original question, it means if the wine should, in truth, be rated as 2, 3, or 4 on the
scale, it’s quite likely that all four wine judges will assign one of those ratings instead of a 1.
In statistics notation, the spike at zero would be written as

𝑃𝑟[all wine ratings > 1|wine is actually 2, 3, or 4 quality] = .48.

On the other hand, if the wine is, in truth, a quality rating 1 wine, the ratings are not as
unanimous. The most likely case is that three of the four judges will assign a 1 rating (what
we’re calling Class 1, or in-class), and it’s a mound-shaped distribution rather than the spike
as for Class 0.

The average rater accuracy is the difference between the averages for the two distributions
shown, after dividing by the number of raters (4). Estimating from the plot, the mean of
Class 0 is about .5, and the mean of Class 1 is about 2.7, for a difference of 2.2. Dividing by
four gives .55, which is quite close to the numerical estimate of .54.

It sounds contradictory, but raters can be better at classifying Class 0 than Class 1, as it seems
to be in this case. We could try splitting the accuracy parameter into two separate ones to
improve model fit. This is described in the chapter on the Kappa Paradox.

15

Figure 10: Likelihood trace for the t parameter

The second plot shows the shape of the log-likelihood for each of the parameters. It ranges
over [0,1] for the selected parameter (here it’s 𝑡), while holding the other parameters constant
at their estimated values (here it is 𝑎 = .54 and 𝑝 = .22). The red marker shows the model
estimate, which should be at the highest point on the graph. The green circle illustrates where
the Fleiss kappa solution would be. That assumes unbiased raters (see the chapter on the
kappas). Here, there’s not much bias, so the Fleiss kappa estimate is close to the optimal
one.

If the MCMC results have been generated, the log-likelihood plot will be augmented with an
illustration of the confidence interval around the mean value.

16

Figure 11: MCMC results

Using the advanced features, a Bayesian estimate for each of the parameters is created, which
gives more insights into the convergence properties of the parameter estimates. The top plot
in the figure above shows the shading for the middle 5%, 50%, and 95% of the distribution
shown in the bottom plot. The bottom plot gives the smoothed density function of the draws
from the MCMC exploration of the likelihood space for this parameter. We want to see a

17

normal-like (mound shaped) density, as is the case here. Sometimes this density is pushed up
against the edge at zero or one, or can even be bimodal. In those cases, it is probably better
to use a mode rather than the mean value for the estimate.

The dashed line in the plot is the average log likelihood for each of the values. Generally we’d
like to see the peaks coincide.

18

5 Ordinal Analysis

Figure 12: Ordinal analysis for the wine ratings

The t-a-p tab only works with binary categories, but we often have rating scales like “poor”
to “excellent” or “strongly disagree” to “strongly agree” that have more than two values and
can be assume to be ordered in intensity. A common way to understand such “ordinal” scales
is to divide the scale at each intermediate point, which we’ll call a cut point.

19

The “ordinal t-a-p” tab is for analyzing ordinal rating scales using this cut point idea. If a
scale is 1 through 5, there are four cut points. The first one separates ratings of 1 from those
of 2-5, which we’ll denote by “1|2” to illustrate where the division happens. The last cut point
for the 1-5 scale is 4|5, separating the 1-4 ratings from the 5 ratings. In each case, we divide
the whole scale into two parts, so it becomes binary for each cut point.

The stacked bar plot at the top of the screen shows the proportions of the inclass (Class 1)
and outclass (Class 0) for each cut point. The inclass is always the leftmost set of the division,
so for the 1|2 cut point on the plot, the Class 1 (inclass) comprises ratings of 1, and the Class
0 (outclass) is ratings of 2, 3, or 4.

The selector on this screen allows a dimension (or objective, outcome) to be chosen if more
than one are present. Clicking on the Compute button then cycles through each cut point to
estimate t-a-p parameters for that binary division and summarizes the results on the plots.

The t-a-p estimates are the solid lines on the plots, one plot for each parameter. The dotted
lines show the solution if the assumption is made that raters are unbiased (the Fliess kappa).
If one of the parameters is estimated to be zero or one, that point is flagged as “degenerate,”
meaning it probably can’t be trusted.

In the case of the wine ratings, average rater accuracy drops as the cut point moves to the
right, implying that the lower quality ratings can be more reliably identified than the higher
quality ratings. This might be the case if there are common physiological responses to the
lower quality wines, but the highest rating is more subject to individual preferences.

From the plot at the top of the display, we can see that raters assigned ratings of 1-3 88% of
the time (look at the 3|4 cut point). However, in the parameter estimates, the true rate of 1-3
ratings is estimated to be about 65%. This difference means that the raters are biased against
assigning the 4 category (a “gold medal” on the original rating scale).

6 More Parameters

The last tab on the application is an advanced feature only available when the Bayesian
methods are installed. These can also be used in scripting via the tapModel R package.

20

Figure 13: Wine ratings with two accuracy parameters

Recall that when we split the wine ratings at 1|2, so that Class 1 = {1} and Class 0 = {2,3,4},
we found that the overall accuracy was .54, and that the shape of the two binomial distributions
suggested that accuracy was higher for Class 0 than Class 1. The same analysis was done here,
but allowing accuracy to have two parameters, one for each class. The estimates show that
indeed the model fit is improved when 𝑎0, the Class 0 accuracy is considerably higher than
the 𝑎1 Class 1 accuracy. when looking at the plots, look at the mode (highest point) rather
than the mean.

Be aware that adding the extra parameters may make the model non-identifiable, meaning
there might be more than one solution or near-solution. This can show up in the log likelihood
plots shown above. For example the long distribution for 𝑝 suggests that it might be better
off split into two parameters, which we can do by checking the box under Compute.

21

Figure 14: Wine data with two a and two p parameters

Splitting the model further to include 𝑝0, 𝑝1 as well as 𝑎0, 𝑎1 ends up making the “vacillation”
problem worse: there are two clear modes for the 𝑡 parameter, and both 𝑎0 and 𝑝0 distributions
are all over the place. The addition of the extra 𝑝 parameter pushed the model far into non-
identifiability.

22

	Introduction
	Basic Functions
	Advanced Functions

	Load Data
	Simulate Data
	Exploring Binary Mixtures
	Feasibility Study
	Additional Parameters

	The t-a-p Solver
	Interpreting Results

	Ordinal Analysis
	More Parameters

