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1 Correlation of Ratings between Raters

Given two distinct raters ¢ and j with common accuracy a and guess probability p, what’s the
correlation between their ratings? Let ¢ = E[C;] = E[C}] = ta + pa. Capital letters denote
random binary variables, so that A, is one if the first rater made an accurate assessment and
zero if not. T is the true value of a common subject being rated. The covariance between the
two raters’ ratings is
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Rater accuracy can be obtained via
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The correlation between two raters’ ratings of the same subject is the intraclass correlation
coefficient (ICC) for a two-way random effects model @shrout_intraclass 1979, which has
been shown to be equivalent to the Fleiss kappa as described in @fleiss2013statistical, p. 611-
12. Under the t = p proficient rater assumption, ¢ = ta + ap = p, so that the Fliess kappa
is (again) shown to be a? under that condition. The relation Equation 1 suggests that the
Fliess kappa could be adjusted for cases when ¢ # p by making assumptions about those two
parameters. For example, maybe the true rate is known from other information. The overall
rate of Class 1 ratings ¢ can be estimated directly from the data, but estimating t requires
either prior knowledge of the context or using the full t-a-p estimation process, in which case
there’s no need to compute the Fliess kappa.

1.1 Correlation Between Ratings and True Values

It is of interest to find the correlation between 7T} the truth value of subject ¢ and the resulting
classification C;. Note that both of the random variables 7; and C; take only values of zero
or one, so squaring them doesn’t change their values. This fact simplifies computations, for
example F[C?] = E[C,;] = ta + pa. The variance of C' is therefore

Var(C) = E[C?] — E2[C]
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= (ta + pa)(ta + pa).

Similarly, Var(T) = tt. The correlation between true values and ratings is then
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Where o is the standard deviation (square root of variance). The relationship in ?@eqg-cor-tc
can also be seen as a = Cor(T, C’)Z—i, which means a can be interpreted as the slope of the



regression line C' = B, 4+ 5,1 + ¢, i.e. a = ;. In the proficient rater case p =t, o = o and
so Cor(T',C) = a. It can also be shown that for a t-a,, ag-p model, the t = p assumption leads
to a = \/a;a,. See Qeubankscause.

The two correlations derived here are related by Cor2(T ,C) = Cor(C;,C}).

2 Alternate Derivation of Fleiss Kappa Relationship

This appendix gives an alternative derivation for the Fleiss kappa’s relationship to rater ac-
curacy under the proficient rater assumption.

The Fleiss kappa @Qfleiss1971measuring is a particular case of Krippendorf’s alpha @krip-
pendorff1978reliability and a multi-rater extension of Scott’s pi @scott1955reliability. The
statistic compares the overall distribution of ratings (ignoring subjects) to the average over
within-subject distributions. These distributions are used to compute the number of observed
matches (i.e. agreements) m, over subjects i = 1... N. For a two-category classification with
a fixed number of raters R > 1 per subject the number of matched ratings for a given subject
1 is
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where k; is the count of Class 1 ratings for the ¢th subject. The match rates are averaged over
the subjects to get E[m,] and then a chance correction is applied with
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where E[m,] is the expected number of matches due to chance. Recall that different agreement
statistics make different assumptions about this chance. Using the t-a-p model, and assuming
t = p, the true rate of Class 1t is assumed to be E[c;;], so E[m,] = t* 4 (1—1t)?, the asymptotic
expected match rate for independent Bernoulli trials with success probability ¢.

By replacing p with t in the t-a-p model’s mixture distribution for the number k of Class 1
ratings a subject is assigned we obtain
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so it suffices for large N to write the expected match rate as
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using the moment identities to gather the sums. Here, ¢t and R are fixed, and m(a) is the
average match rate over cases, which depends on unknown a and fixed t = E[c;;]. Now we can
compute the Fleiss kappa with
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So kappa is the square of accuracy under the proficient rater assumption, with constant rater
accuracy and fixed number of raters. The relationship does not depend on the true distribution
t of Class 1 cases.
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