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1 Introduction

The formula for chance-corrected measure of agreement (generically a “kappa”) compares
observed match rates to the expectation of random match rates. The kappas vary in how they
estimate the random match rates. For two ratings to match, two raters 𝑗, 𝑘 of the same subject
𝑖 must agree in their assignment of either Class 1 or Class 0 classifications. In other words,
the binary random variables must agree: 𝐶𝑖𝑗 = 𝐶𝑖𝑘. A generic formula that includes the most
common kappas is

𝜅 = 𝑚𝑜 − 𝑚𝑐
1 − 𝑚𝑐

,

where 𝑚𝑜 is the observed proportion of agreements and 𝑚𝑐 is the expected proportion of
agreements under chance. The assumption about 𝑚𝑐 is a defining feature of the various
kappa statistics. The most general treatment of such statistics is the Krippendorff alpha
(Krippendorff, 2018, pp. 221–250)

The various kappas differ in the assumption made about the chance correction probability
𝑚𝑐. Commonly, the assumption is that 𝑚𝑐 = 𝑥2 + ̄𝑥2 for some probability 𝑥. This simple
formulation makes sense when both raters are guessing, but the actual case is more complicated
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because a match “by chance” could be a case where one rating was accurate and the other was
a guess. This distinction isn’t generally made in the derivations of the kappas, although the
AC1 paper discusses the issue, and hints at a full three-parameter model. It’s ironic that the
confusion about kappas is disagreement about the probability of agreement by chance.

The Fleiss kappa (Fleiss, 1971) uses the fraction of Class 1 ratings 𝑐 to create 𝑚𝑐 = 𝑐2 + ̄𝑐2.
The S statistic Bennett et al. (1954) (also called the Guilfords’ G or G-index Holley & Guilford
(1964)) is a kappa that assumes 𝑚𝑐 = 1/2 when there are two categories. The AC1 kappa has
a different form, assuming that 𝑚𝑐 = 2𝑐 ̄𝑐 Gwet (2008). The Cohen kappa is a variation where
each rater gets a guessing distribution, so 𝑚𝑐 = 𝑥1𝑥2 + ̄𝑥1 ̄𝑥2 Cohen (1960).

Consider two raters classifying an observation. In the t-a-p model we can express the expected
value of observed matches 𝑚𝑜 as the sum of three kinds of agreement: (1) 𝑚𝑎 is when both
raters are accurate (and hence agree), (2) 𝑚𝑖 when both raters are inaccurate (guessing) and
agree, and (3) 𝑚𝑥 is the mixed case when one rater is accurate and the other is inaccurate
but they agree. The second two of these have expressions that include the guessing rate 𝑚𝑐.
Following that thinking we have the following expectations for rates:

𝑚𝑎 = 𝑎2 (both accurate)
𝑚𝑟 = 𝑝2 + ̄𝑝2 (random ratings)
𝑚𝑖 = ̄𝑎2𝑚𝑟 = 𝑎2𝑚𝑟 − 2𝑎𝑚𝑟 + 𝑚𝑟 (both inaccurate)
𝑚𝑥 = 2𝑎 ̄𝑎(𝑡𝑝 + ̄𝑡 ̄𝑝) (mixed accurate and inaccurate)
𝑚𝑜 = 𝑚𝑎 + 𝑚𝑖 + 𝑚𝑥 (observed match rate)

= 𝑎2 + 𝑎2𝑚𝑟 + 𝑚𝑟 − 2𝑎𝑚𝑟 + 2𝑎 ̄𝑎(𝑡𝑝 + ̄𝑡 ̄𝑝)

(1)

For 𝑚𝑎, both ratings must be accurate, in which case they automatically agree. For 𝑚𝑖, both
must be inaccurate (probability ̄𝑎2) and then match randomly (probability 𝑚𝑟). For 𝑚𝑥, one
rater must be accurate and the other inaccurate, in which case they agree if the accurate rater
chooses the category that the inaccurate rater guesses. The various kappa derivations usually
ignore these mixed matches in favor of using 𝑚𝑟 as the chance match rate, which we called
𝑚𝑐 in the kappa formula. This amounts to choosing 𝑝 since 𝑚𝑟 = 𝑝2 + ̄𝑝2.

The various match rates in Equation 1 create a vocabulary for understanding some of the kappa
statistics. The easiest one to analyze is the S-statistic (it is sometimes called the G-index).

2 Naive Raters: The S-Statistic

Recall that rater agreement for a binary choice is when there are two equal sized groups of
raters that assign each of the two categories. This would be the case, on average, if the raters
were flipping coins to assign categories. In the t-a-p model, this 50% chance for each category
defines the 𝑝 parameter. The S-statistic Bennett et al. (1954) makes the assumption that
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if there are two categories to choose from, then the chance of a random match between two
raters is 𝑚𝑐 = 𝑚𝑟 = 1/2. If we assume this means two random raters in the t-a-p model,
we have 𝑝 = 1/2. I call this the naive rater assumption, because it assumes that inaccurate
raters are not influenced by the actual proportions of the two categories. For example, if an
inexperienced doctor repeatedly diagnosed patients as having a very rare condition, this would
be “naive” in the meaning here.

Substituting 𝑝 = 1/2 into the formulas of Equation 1 results in the kappa

𝜅𝑠 = 𝑚𝑜 − 𝑚𝑐
1 − 𝑚𝑐

= 𝑎2 + 𝑎2/2 + 1/2 − 𝑎 + 2𝑎 ̄𝑎(𝑡/2 + ̄𝑡/2) − 1/2
1 − 1/2

= 2(3𝑎2/2 + 1/2 + −𝑎 + 𝑎 − 𝑎2 − 1/2)
= 𝑎2

In this case, the intuition from the introductory chapter that we’re interested in something
like the square root of rater agreement is exactly right. If the raters really do assign random
ratings as if flipping a coin, then the resulting kappa derived from the data will have as its
expectation the accuracy squared. Actual results will also have estimation error, depending
on sample size and how unlucky you are.

3 Unbiased Raters: the Fleiss Kappa

The Fleiss kappa is designed to work with ratings where the number of raters per subject can
vary, and with a rating scale of arbitrary length. It assumes an asymptotic form for chance
correction, so is most appropriate for large samples. I will only consider the binary scale case
here for simplicity.

The baseline for random ratings for Fleiss is if we took all the ratings and randomly shuffled
them between subjects. In this case, the match rate for two raters is given by the proportions of
the ratings for the two classes. For example, if Class 1 ratings comprise 20% of the total, then
the random match rate is 𝑚𝑐 = .22 + .82. That’s the probability that either two random Class
1 ratings match or two random Class 0 ratings do. If 𝑐 is the expected proportion of Class 1
ratings, then 𝑚𝑐 = 𝑐2+ ̄𝑐2. From the t-a-p diagram, we can see that 𝑐 = 𝑡(𝑎+ ̄𝑎𝑝)+ ̄𝑡 ̄𝑎𝑝 = 𝑡𝑎+ ̄𝑎𝑝.
If inaccurate ratings assign Class 1 at the true rate so that 𝑡 = 𝑝, I’ll describe the raters as
“unbiased.” In that case 𝑐 = 𝑝𝑎 + 𝑝 ̄𝑎 = 𝑝 = 𝑡; the rating proportions of Class 1 reflect the
true rates, because the raters assign proportionate “guesses” for inaccurate ratings. Under
this assumption, with 𝑡 = 𝑝 and 𝑚𝑐 = 𝑚𝑟 = 𝑝2 + ̄𝑝2, kappa becomes
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𝜅𝑓 = 𝑚𝑜 − 𝑚𝑐
1 − 𝑚𝑐

= 𝑎2 + 𝑎2𝑚𝑟 + 𝑚𝑟 − 2𝑎𝑚𝑟 + 2𝑎 ̄𝑎(𝑝2 + ̄𝑝2) − 𝑚𝑟
1 − 𝑚𝑟

= 𝑎2 + 𝑚𝑟(𝑎2 + 1 − 2𝑎 + 2𝑎 − 2𝑎2 − 1)
1 − 𝑚𝑟

= 𝑎2 − 𝑎2𝑚𝑟
1 − 𝑚𝑟

= 𝑎2.

For the Fleiss kappa, it is also true that the expectation of kappa is the accuracy squared, this
time if the condition 𝑡 = 𝑝 is met by the raters represented in the data you have.

A review of the properties of Fleiss kappa can be found in Fleiss et al. (2013), chapter 18,
including kappa’s equivalence to an intraclass correlation coefficient, defined as ICC(1,1) in
Shrout & Fleiss (1979). Under the 𝑡 = 𝑝 “unbiased” condition, rater accuracy 𝑎 is the correla-
tion between the ratings and the true classifications: √𝜅𝑓 = 𝑎 = 𝑐𝑜𝑟(𝐶, 𝑇 ). Additionally, the
Fleiss kappa is the intraclass correlation of the ratings. Derivations of these results are found
in Appendix A, where there is also an alternative derivation of the 𝑎 = √𝜅𝑓 result.

If the 𝑡 = 𝑝 assumption is not true for your raters, then the resulting kappa will be biased. In
some cases, kappa may be negative. This is a general problem for the kappas, since they make
assumptions about the distribution of random raters without testing those assumptions.

4 AC 1

The AC1 version of kappa developed in Gwet (2008) uses a disaggregation of rating agreements
found in Table 4, page 36, where the author distinguishes between ratings that are certain (the
same as “for cause” as found in Landis & Koch (1977)) versus random. The stated goal is
to estimate the probability that two raters match when they both rate accurately (“with
certainty”). This is 𝑎2 in the t-a-p model (equation 16 in the paper). Random matches
are those in which at least one of raters rates randomly. In terms of the t-a-p model, this
assumes that the probability of a by-chance agreement is 𝑚𝑐 = 𝑚𝑖 + 𝑚𝑥, the cases where
either both raters match randomly or at least one makes an inaccurate rating and they match.
The acknowledgement of partially inaccurate matches is a philosophical advance over previous
derivations of kappa.

The AC1 kappa is derived from the usual formula (total match rate - estimated random match
rate) / (1 - estimated random match rate) (see equation 17 in the paper). The problem, as
usual with this approach, is to estimate the (partially) random match rate 𝑚𝑐 = 𝑚𝑖 + 𝑚𝑥. Of
course, neither 𝑚𝑖 nor 𝑚𝑥 are directly observable, so the author derives an approximation in
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two steps. First the probability of agreement between two raters, at least one of whom made
an inaccurate rating, is assumed to be 1/2. In the t-a-p model, this amounts to

𝑃𝑟[match|random] = 𝑚𝑖 + 𝑚𝑥
1 − 𝑎2 ≈ 1/2. (2)

To remove the denominator requires multiplying by the probability of at least one random
rating, which is then approximated by 4𝑐 ̄𝑐, where 𝑐 is the probability of a rater assigning Class
1 to a subject, which can be estimated directly from the data. Since from the t-a-p diagram
of conditional probabilities, 𝑐 = 𝑡𝑎 + ̄𝑎𝑝, the estimation entails assuming that

𝑃𝑟[random] = 1 − 𝑎2 ≈ 4(𝑡𝑎 + ̄𝑎𝑝)(1 − 𝑡𝑎 − ̄𝑎𝑝)

Multiplying these gives (page 37) ̂𝑚𝑐 = 2𝑐 ̄𝑐 = 2(𝑡𝑎 + ̄𝑎𝑝)(1 − 𝑡𝑎 − ̄𝑎𝑝). The approach here
is ingenious and philosophically rich, but the limitations of a one-parameter index for rater
agreement limit how much can be done.

In our notation here, the Fleiss kappa assumes 𝑚𝑐 = 𝑐2 + ̄𝑐2, and the AC1 assumes that
𝑚𝑐 = 2𝑐 ̄𝑐. The AC1 version is the complement of the Fleiss version: they sum to one since
1 = (𝑐 + ̄𝑐)2 = 𝑐2 + 2𝑐 ̄𝑐 + ̄𝑐2. In some sense, the assumptions about the two kappas are
opposite: what Fleiss considers random, AC1 considers non-random, and vice-versa, at least
in expectation.

5 Discussion

Both the worst-case match rate for binary ratings, 𝑝 = 1/2, and the proportional (unbiased)
rate 𝑡 = 𝑝 lead to kappas that have a nice relationship to accuracy in the t-a-p model, but
only when the respective assumption about raters is true. Generally we don’t know what 𝑝 is
for a given data set, however, so assuming either of those conditions is a leap of faith.

We might wonder if there are other kappas that have the nice property that accuracy is the
square root. We can attempt to choose 𝑚𝑐 so that 𝜅 = 𝑎2 via 𝑚𝑜 − 𝑚𝑐 = 𝑎2(1 − 𝑚𝑐). Solving
for 𝑚𝑐 and using 𝑚𝑜 − 𝑎2 = 𝑚𝑖 + 𝑚𝑥 leads to

𝑚∗
𝑐 = 𝑚𝑖 + 𝑚𝑥

1 − 𝑎2

= ̄𝑎2𝑚𝑟 + 2𝑎 ̄𝑎(𝑡𝑝 + ̄𝑡 ̄𝑝)
(1 + 𝑎) ̄𝑎

= ̄𝑎(𝑝2 + ̄𝑝2) + 2𝑎(𝑡𝑝 + ̄𝑡 ̄𝑝)
1 + 𝑎

(3)
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where the asterisk denotes the choice of the chance correction formula 𝑚𝑐 that makes 𝜅 = 𝑎2.
In the first line of Equation 3, the numerator is the expected proportion of matches where
there is at least one inaccurate rating, and the denominator is the the rate of non-perfect
rating pairs, where at least one of the raters is inaccurate (they may or may not match). We
saw this above in the derivation of AC1 in Equation 2. It turns out that the correct choice of
𝑚𝑐 is the conditional probability of a match given that at least one of the raters is inaccurate,
rather than the unconditional probability of a match given that at least one of the raters is
inaccurate.

The chance correction is therefore accounting for the accurate ratings by taking them out
of the data altogether and then calculating inaccurate matches out of all rating pairs as the
probability of by-chance matching.

The formula in Equation 3 is useful for testing properties of kappa assumptions. We can use
it to verify that 𝑝 = 1/2 (naive raters) and 𝑡 = 𝑝 (unbiased raters) works as shown earlier.

In practice, it’s better to just derive all three of the t-a-p parameters instead of making
assumptions that have to be tested (by deriving all the parameters).
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