
Chapter 2: The t-a-p Model
David Eubanks

Table of contents

1 Introduction 1

2 Conditional Probabilities 3

3 Binomial Mixtures 4

4 Simulation 8

5 Fitting the Model 9

6 Indentifiability 12

7 Overdispersion 13

8 Other Properties 13

This chapter examines the assumptions and implications of the t-a-p model in detail to build
a theoretical foundation for estimation and inference. This work also paves the way to connect
the three parameter model to widely-used rater agreement statistics (kappas) and machine
learning algorithms.

1 Introduction

Suppose that we have 𝑁 subjects to be classified by at least two raters each, and each subject
belongs (in truth) to one of two categories Class 1 or Class 0, abbreviated to 𝐶1, 𝐶0. For
example, if faculty members review portfolios of student work, the two classes could be “pass”
and “fail.” We often use ordered classifications like “A, B, C, D, F” or “Excellent, Good,
Fair, Poor” but these can be converted to binary classifications by grouping the classes. For
example “A, B, C” could be compared to “D, F” or “Excellent, Good” could be compared to
“Fair, Poor.” There are also extensions of the t-a-p model that work directly on ordinal or

1

non-binary categorical scales. The exposition is easiest to understand for the binary case, so
we will start there.

We assume that each subject is independently assigned to one of the two classes by each of
𝑅 observers (raters). For now, think of 𝑅 as fixed, so that there are 𝑅𝑁 total ratings, but
that condition is relaxed later on, so that the number of ratings per subject can vary, which
is common in real data.
Rater-assigned categories are distinguished from true classes in notation by the use of hats
to suggest an estimated value. Ratings of Class 1 are denoted 𝐶1, but some of them may be
𝐶0 in truth. This distinction between rated (estimated) values and true values leads to the
idea of true/false positives/negatives and the confusion matrix described in the introductory
chapter. However, the confusion matrix does not capture all the details we are interested in.
For example, the true positive rate of classification in the matrix doesn’t distinguish between
ratings that are true for a good reason and those that are accidentally true (maybe the rater
is just flipping coins). To solve that problem we need the idea of rater accuracy.

We will assume that an assigned rating corresponds to the belief of a rater. This rules out
raters who are intentionally being deceptive, for example. Then we will say that a rater makes
an accurate assignment of 𝐶1 or 𝐶0 for a subject if

1. the rater-assigned class is the true class, and

2. the rater has justification for the choice.

These requirements operationalize the Justified True Belief (JTB) definition of knowledge used
by philosophers who study epistemology. Inaccurate ratings are those where one of the two
listed conditions fails. If the rater’s belief is false and chooses the wrong category or if they
choose the correct category but because of an invalid justification. The latter case corresponds
loosely to Gettier-type problems, where the chain of reasoning reaches a correct conclusion,
but because of flaws in perception the logic isn’t sound. A clear case of failing the justification
requirement is if raters flip coins to choose categories. Coin flipping is entirely random, but
even good raters have some randomness inherent to the classifications. That randomness is
the usual starting point for chance-corrected agreement statistics.

The rating process just described lends itself to a tree diagram that illustrates three variables
as conditional probabilities: (1) the true Class 1 rate 𝑡, (2) rater accuracy 𝑎, and (3) the
probability 𝑝 of choosing 𝐶1 when rating inaccurately. On the diagram, it’s convenient to use
a bar over a variable to denote its complementary probability, e.g. ̄𝑎 = 1 − 𝑎.

Each rating is conditional on a subject’s true classification (Class 1 or Class 0), which will
often be unknown, so that we can only observe the rater-assigned categories 𝐶1 and 𝐶0. The
rating data will be denoted by 𝑐𝑖𝑗, where 𝑖 = 1 … 𝑁 are the subjects and 𝑗 = 1 … 𝑅 are the
raters, who independently classify subjects as 1 or 0 according to the 𝐶1 or 𝐶0assignment,
respectively. This is convenient, since 𝑘𝑖 ∶= ∑𝑗 𝑐𝑖𝑗 is the number of 𝐶1 ratings for subject 𝑖,
and the average of the classifications made by raters is E[𝐶1] = ∑ 𝑐𝑖𝑗/(𝑁𝑅).

2

Figure 1: Assumed rating process, where 𝑇 is a hidden variable recording the true classification
of each subject and 𝐶 recorded the assigned class by a rater.

Example: A wine judge independently and honestly assesses a vintage for excellence. The
two categories are 𝐶1 = “excellent” and 𝐶0 = “not excellent.” After judging four wines, the
situation might be that in the table below.

Table 1: Sample wine ratings showing normally unknown truth values.

Wine Truth Accurate? Classification
1 Excellent Yes Excellent
2 Excellent No Not Excellent
3 Not Excellent No Not Excellent
4 Not Excellent Yes Not Excellent
5 Not Excellent Yes Not Excellent

If the judge makes an accurate assessment, the classification recorded matches the true value.
But for the third wine, the judge got the correct answer even though the process was flawed
and somewhat random (an inaccurate rating). For the second wine, the inaccuracy resulted
in the wrong classification being assigned. Those two inaccurate cases are illustrated in the
process diagram in the middle, marked Random.

2 Conditional Probabilities

The tree diagram in figure @fig-tree models the assignments of ratings 𝑐𝑖𝑗 over subject 𝑖 and
rater 𝑗, and can be read by multiplying the conditional probabilities on the edges from the top

3

down to find the probability of a given classification being 𝑐𝑖𝑗 = 𝐶1.

If a subject is not classified accurately, the classification for that rater is assumed to be made
at random, with probability 𝑝 of choosing 𝐶1 regardless of the true class. So the conditional
probability of a 𝐶1 classification when the subject really is 𝐶1 is Pr(𝐶1|𝐶1) = 𝑎+𝑎′𝑝. Similarly,
Pr(𝐶1|𝐶0) = 𝑎′𝑝. This model assumes that guess rates for the two classes are the same
independent of the true classification. More complex models are introduced later.

The binary (Bernoulli) probability that for a given subject with a given true classification, a
rater will assign a 𝐶1 rating is shown in the table below. This comes from reading the tree
diagram from the top down, multiplying the branches.

Table 2: Conditional probabilities of a single rater assigning a 𝐶1 rating to a subject.

True C1 True C0
Classified C1 𝑎 + ̄𝑎𝑝 ̄𝑎𝑝

We can use these probabilities to find the expected number of ratings of Class 1.

3 Binomial Mixtures

The rating process posed in the t-a-p model is illustrated with the tree diagram and table
of example ratings above. But both of those entail the use of the hidden true classification
value for each subject. There are cases where that can be known, but in general it is not.
What we usually have to work with is a table of ratings, from which we must infer the hidden
variables like rater accuracy. The collection the ratings under the t-a-p assumptions fall into
a well-studied probability distribution called a binomial mixture.

set the parameters
N_r = 5 # number of raters for each subject
N_s = 100 # number of subjects (not used here)

t = .3 # fraction of subjects that are in fact class 1
a = .7 # probability of a rater rating a subject accurately
p = .2 # probability of a rater rating a subject as class 1 when rating inaccurately

find the conditional probabilities for each class

probabilities of a class 1 rating for a class 0 subject
c0_probs = dbinom(0:N_r, N_r, prob = (1-a)*p)

4

probabilities of a class 1 rating for a class 1 subject
c1_probs = dbinom(0:N_r, N_r, prob = a + (1-a)*p)

create the mixture with t as the mixing parameter
mixture = c0_probs * (1-t) + c1_probs * t

Plot the conditional probabilities
plot(0:N_r, c0_probs, type="b", col="blue", pch=16, ylim=c(0, max(c(c0_probs, c1_probs, mixture))),

ylab="Probability", xlab="Number of class 1 ratings for a given subject", main="Binomial Mixture Plot")

Add the second component (c1_probs)
lines(0:N_r, c1_probs, type="b", col="red", pch=16)

Add the mixture as a black dashed line
lines(0:N_r, mixture, type="b", col="black", lty=2, pch=16)

Add a legend
legend("topright", legend=c("Class 0 Probabilities", "Class 1 Probabilities", "Mixture"),

col=c("blue", "red", "black"), lty=c(1, 1, 2), pch=16)

5

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

Binomial Mixture Plot

Number of class 1 ratings for a given subject

P
ro

ba
bi

lit
y

Class 0 Probabilities
Class 1 Probabilities
Mixture

Figure 2: Binomial mixture showing the probability of the number of class 1 ratings for a
given subject. In blue is the distribution for true-class 0 subjects, in red is the
distribution for true-class 1 subjects, and the black line is the mixture based on
relative proportions.

Figure 2 shows an example of how probabilities combine to create the mixture. Given the three
t-a-p parameters plus the number of raters per subject, we apply the binomial probability
density function using the probabilities found at the end of the previous section. The mixture
is created by weighting these two distributions by their frequency in the sample space. In this
case, the parameters are 𝑡 = .3, 𝑎 = .7, and 𝑝 = .2.

For true Class 1 cases, the probability of a rater assigning a 𝐶1 rating is 𝑡𝑎 + 𝑡 ̄𝑎𝑝, and for true
Class 0 cases it is ̄𝑡 ̄𝑎𝑝 (see the table at the end of the last section). Those are probabilities for
a single rating. If we have 𝑁𝑟 raters, then anywhere between zero and 𝑁𝑟 of them could assign
a 𝐶1 rating to a given subject. The binomial distribution gives the probability for each of
those possible count outcomes. For true Class 1 subjects the probability of 𝑘 raters assigning
a 𝐶1 rating is

6

𝑃𝑟(𝑘|𝐶1) = (𝑁𝑟
𝑘)(𝑎 + ̄𝑎𝑝)𝑘(1 − 𝑎 − ̄𝑎𝑝)𝑁𝑟−𝑘

= (𝑁𝑟
𝑘)(𝑎 + ̄𝑎𝑝)𝑘(̄𝑎 − ̄𝑎𝑝)𝑁𝑟−𝑘

= (𝑁𝑟
𝑘)(𝑎 + ̄𝑎𝑝)𝑘(̄𝑎 ̄𝑝)𝑁𝑟−𝑘

That distribution is represented by the red line in Figure 2. Notice that the most outcome is
that four of the five raters assign a 𝐶1 rating. The reason that’s not five is that the parameter
𝑝 = .2 means that for inaccurate ratings, the “guess” is much more likely to assign 𝐶0 than
𝐶1. The effect is to deflate the number of 𝐶1 ratings for true Class 1 subjects.

For true Class 0 cases (the blue line in the plot), it is

𝑃𝑟(𝑘|𝐶0) = (𝑁𝑟
𝑘)(̄𝑎𝑝)𝑘(1 − ̄𝑎𝑝)𝑁𝑟−𝑘

These are the two probability distributions are shown in Figure 2, with the given parameters
applied. The code is included so that you can try variations on your own.

But there are not necessarily the same number of true Class 1 and Class 0 cases. The fraction
of Class 1 cases is assumed to be 𝑡. The mixture of the two

𝑃𝑟(𝑘) = 𝑡(𝑁𝑟
𝑘)(𝑎 + ̄𝑎𝑝)𝑘(̄𝑎 ̄𝑝)𝑁𝑟−𝑘 + ̄𝑡(𝑁𝑟

𝑘)(̄𝑎𝑝)𝑘(1 − ̄𝑎𝑝)𝑁𝑟−𝑘

This is the mixture distribution that is assumed to represent the count data. To proceed with
an investigation of the t-a-p model, we first count up the number of 𝐶1 ratings for each subject.
If there are the same number of raters for each subject, these counts will form a histogram
that corresponds to the black dashed line in the figure, for some set of t-a-p parameters. The
job then is to find out what those parameters are.

So for a real data set, the red and blue plots in Figure 2 are assumed to exist, but are not
directly accessible to us. Instead we can see something like the mixture (black dashed line). But
even that isn’t exact, because it is subject to sampling error: the histogram of counts won’t
exactly correspond to the ideal probabilities. The larger the number of subjects rated, the
closer the empirical proportions will, in theory, converge to the ideal mixture distribution.

For general information on binomial mixtures of discrete data see @agresti2003categorical
chapter 14.

7

4 Simulation

The interactive app provided with the tapModel R package allows you to specify t-a-p param-
eters and generate a data set from them. Once the package is installed, you can run the app
with tapModel::launchApp(). Navigate to the Simulate Data tab.

Figure 3: Rating distributions with t = .3, a = .7, p = .2. Plot A has 20 subjects and Plot
B has 1000. The blue bars are the histograms of the simulated data and the orange
dashed line is the true mixture probability distribution.

Figure 3 shows two count histograms with identical parameters except for the number of
subjects (20 versus 1000). The histograms are the result of applying the t-a-p binomial mixture
distribution with five raters on each subject and parameter set (𝑡 = .3, 𝑎 = .7, 𝑝 = .2). Notice
that the smaller sample size on the left (plot A) doesn’t match the distribution line as well as
the one on the right. This is the effect of random sampling. The smaller the sample, the more
likely it is that the empirical counts don’t look like the distribution.

This leaves us with two problems: how do we estimate the parameters, and how much should
we trust the results? These are classical problems from statistics.

The accuracy rate 𝑎 will affect the subject distributions. If 𝑎 = 0 the ratings will be distributed
as Bernoulli(𝑝), independently of the subjects being rated. If 𝑎 = 1, then all raters agree on the
true value for each subject. Therefore the way we can reconstruct 𝑎 from data is through the
distribution of the within-subject ratings. The method used here can be seen as a latent class
model with binomial mixture distributions. For a nice discussion of these ideas in practice see
[?], which helpfully notes that binomial mixtures are statistically identifiable if the number of
cases exceeds a low threshold [?].

We would like to know the true proportion 𝑡 of the subjects belonging to 𝐶1 regardless of how
they were rated, rater accuracy 𝑎, and the proportion 𝑝 of inaccurate assignments that are
𝐶1. That goal describes the general model illustrated in the following section. A hierarchical
version is given subsequently.

8

note: see https://www.jarad.me/courses/stat544/slides/Ch05/Ch05a.pdf

and https://cran.r-project.org/web/packages/mixtools/vignettes/mixtools.pdf

https://joss.theoj.org/papers/10.21105/joss.01505

I should address the label-switching problem. I think that’s taken care of by way the classifi-
cations are pre-specified, AND accuracy is generic.

5 Fitting the Model

The first question about the model illustrated in figure ?? is whether it is computationally
useful. Using known parameter values for 𝑝, 𝑎, 𝑡 to generate simulated ratings, can we then
recover the parameters from the data? The answer is yes, with some provisos. Given a data
set 𝑐𝑖𝑗, we can fit a general model to estimate the three parameters 𝑡, 𝑎, and 𝑝 using maximum
likelihood to fit a binomial mixture model. The log likelihood function for the binomial mixture
described by figure ?? with 𝑁 subjects and 𝑅 > 1 raters is

ℓ(𝑡, 𝑎, 𝑝; 𝑘1, … , 𝑘𝑁) =
𝑁

∑
𝑖=1

log (𝑡(𝑅
𝑘𝑖

)(𝑎 + 𝑎′𝑝)𝑘𝑖(𝑎′𝑝′)𝑅−𝑘𝑖 + 𝑡′(𝑅
𝑘𝑖

)(𝑎′𝑝)𝑘𝑖(1 − 𝑎′𝑝)𝑅−𝑘𝑖)

where 𝑘𝑖 = ∑𝑗 𝐶𝑖𝑗 the number of Class 1 ratings for subject 𝑖. The sum over the logs is
justified by the assumption that ratings are independent. It is straightforward to implement
the function in the Bayesian programming language Stan [?], using uniform (0, 1) priors for
the three parameters (see the Discussion section to access the source code).

To test the computational feasibility of this method, ratings were simulated using a range of
values of 𝑡, 𝑎, and 𝑝. The 729 trials each simulated 300 subjects with five raters each, using all
combinations of values ranging from .1 to .9 in increments of .1 for each of 𝑡, 𝑎, and 𝑝. The Stan
engine uses a Markov chain Monte Carlo (MCMC) algorithm to gather representative samples
from the joint probability density of the three parameters. Each run used 1,000 iterations (800
after warm-up) with four chains each.

[need to cite @gelman2020bayesian and use those methods]

regenerate = FALSE

if(regenerate == TRUE){
param_grid <- expand.grid(t = seq(.1,.9,.1),a = seq(.1,.9,.1),p = seq(.1,.9,.1))

n_sims <- nrow(param_grid)
N <- 300 # number of subjects

9

https://www.jarad.me/courses/stat544/slides/Ch05/Ch05a.pdf
https://cran.r-project.org/web/packages/mixtools/vignettes/mixtools.pdf
https://joss.theoj.org/papers/10.21105/joss.01505

R <- 5 # number of raters

out <- data.frame()
fixed_model_spec <- stan_model("code/fixed_effects.stan")

for(i in 1:n_sims){
ratings <- generate_ratings(N, R, param_grid$p[i], param_grid$a[i], param_grid$t[i])

get the number of Class 1 ratings per subject in a vector
counts <- ratings %>%
group_by(SubjectID) %>%
summarize(k = sum(RatedClass)) %>%
select(k) %>%
pull()

kappa <- sqrt(fleiss(counts,R))

fixed_model <- sampling(object = fixed_model_spec,
data = list(N = N, R = R, S = 1, count = counts),
iter = 1000,
warmup = 200,
thin = 1)

stats <- rbind(broom::tidy(fixed_model),
data.frame(term = "root kappa",estimate = kappa, std.error = NA,

stringsAsFactors = FALSE)) %>%
mutate(p = param_grid$p[i], a = param_grid$a[i], t = param_grid$t[i])

out <- rbind(out,stats)
}
write_csv(out,"data/fit_test_sim.csv")

} else {
out <- read_csv("data/fit_test_sim.csv")

}

format for plotting
pdf <- out %>%
filter(a > .2) %>%
select(parameter = term, value = estimate, actual_p = p, actual_a = a, actual_t = t) %>%
spread(parameter, value) %>%
rename(estimated_a = accuracy, estimated_p = p, kappa_a = `root kappa`, estimated_t = t) %>%
mutate(Sim = row_number()) %>%

10

gather(parameter, value, -Sim) %>%
separate(parameter, into = c("type","parameter"), sep = "_") %>%
spread(type, value)

ggplot(pdf, aes(x = actual, y = estimated, group = actual)) +
geom_boxplot() +
geom_abline(slope = 1, intercept = 0) +
facet_grid(. ~ parameter) +
theme_bw()

a p t

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
0.00

0.25

0.50

0.75

1.00

actual

es
tim

at
ed

Figure 4: Box and whisker plots show parameter estimates from simulations of rater data 𝑡-𝑎-𝑝
values ranging from .1 to .9. The diagonal line marks perfect estimates.

The accuracy measure 𝑎 and the Class 1 “guess rate” 𝑝 are stable across scenarios in figure 4,
but the estimated true fraction of Class 1 cases 𝑡 is sensitive to values of 𝑎 near zero. To see
this, substitute 𝑎 = 0 into the likelihood function to get

ℓ(𝑡, 𝑝; 𝑎 = 0, 𝑘1, … , 𝑘𝑁) =
𝑁

∑
𝑖=1

log (𝑡(𝑅
𝑘𝑖

)𝑝𝑘𝑖(𝑝′)𝑅−𝑘𝑖 + 𝑡′(𝑅
𝑘𝑖

)𝑝𝑘𝑖(𝑝′)𝑅−𝑘𝑖)

=
𝑁

∑
𝑖=1

log ((𝑅
𝑘𝑖

)𝑝𝑘𝑖(1 − 𝑝)𝑅−𝑘𝑖)

showing that 𝑡 is under-determined when 𝑎 = 0, and we should expect poor behavior as 𝑎
nears zero. This is intuitive: if the raters are only guessing, they should give us no information

11

about the true 𝐶1 rate. If the data in figure 4 are filtered to 𝑎 > .2 the estimates of 𝑡 greatly
improve. Aside from extreme values of 𝑎 affecting the estimation of 𝑡, a visual inspection of
the scatter plots of the parameter estimates shows no correlations.

6 Indentifiability

The tap model is not identifiable in the sense that, given a set of ratings, the likelihood
function is not uniquely maximized for a single choice of (𝑡, 𝑎, 𝑝). As an example, consider a
set of ratings of subjects with two raters each, where for each subject one rater assigns Class
1 and the other rater assigns Class 0. The likelihood function is the product of the likelihood
for each subject, and these will be identical, so maximizing likelihood for one subject is the
same as for the whole data set. By symmetry, 𝑎 ≤ 1/2 and likelihood will be maximized when
𝑎 + ̄𝑎𝑝 = 1/2 so that any value of 𝑝 = 1/2−𝑎

1−𝑎 is a solution. Intuitively, this choice ranges from
accuracy of .5 and 𝑝 = 0 to accuracy of 0 and 𝑝 = 1/2.

Other non-identifiable cases occur when one or more of the tap parameters is zero or one.
If a = 1, it doesn’t matter what p is, for example. These degenerate cases aside, the tap
paramterization of the binomial mixture has an advantage over the usual way this is done, to
estimate the mean of each of the two binomial distributions individually. If 𝑃𝑟[𝑚𝑖𝑥𝑡𝑢𝑟𝑒] =
𝑡binom(𝜇 = 𝑐1) + (1 − 𝑡)binom(𝑚𝑢 = 𝑐0) we must then add the constraint that 𝜇1 ≥ 𝜇2 to
avoid label switching. The tap parameterization allows all three of the parameters to be in
[0,1] without such a problem, because a is the difference between the two means: 𝑐1 − 𝑐0 =
𝑎 + ̄𝑎𝑝 − ̄𝑎𝑝.

Non-uniqueness is a well-known problem with mixture models, and it is less of a problem for
Bayesian MCMC estimation, which provides a full posterior distribution for the parameters,
which may be multi-modal if there are two competing solutions. This gives us a way to detect
degenerate solutions and look for a different model if desired.

In the case where we allow individual parameters for accuracy and random class assignment,
the t-a0a1-p0p1 case, we may get data sets that are not identifiable for label-switching reasons.
That is, we may be able to find the maximum likelihood mixture of binomial distributions,
but not know which is Class 0 and which is Class 1. This is not a model problem, but a data
problem.

With the 𝑎0, 𝑎1, 𝑝0, 𝑝1 parameters, label switching means that we swap ̄𝑡 for 𝑡 and the two corre-
sponding means swap as well. That requires some second set of the parameters 𝑎0′, 𝑎1′, 𝑝0′, 𝑝1′

such that

𝑎1 + ̄𝑎1𝑝1 = ̄𝑎0
′𝑝′

0
𝑎′

1 + ̄𝑎1
′𝑝′

1 = ̄𝑎0𝑝0

12

Then we can swap the primes for the non-primes, and exchange t for 1-t and the distribution is
the same. There are four free parameters and two constraints shown above, plus the constraints
that all parameters are in [0,1]. A example of a label-switching set is when 𝜇0 = ̄𝑎0𝑝0 >
𝑎1 + ̄𝑎1𝑝1 = 𝜇1, so that there are more class 1 ratings for class 0 cases that there are for true
class 1 cases. Suppose a0 = .5, a1 = .2, p0 = .7 and p1 = .1, we have 𝜇0 = (.5)(.7) = .35
and 𝜇1 = .2 + (.8).1 = .28, so the mean of the class 1 ratings is to the left of the mean of the
class 0 ratings. This can’t happen with the three-parameter model. It’s not a problem with
the model, however, but an expression of the ratings and raters. For example, suppose these
are wine tasting ratings, and it’s easier to for judges to agree on poor wine than excellent wine
(this seems to be the case in practice). Suppose further that some of the raters are motivated
to over-rate poor wines, pushing up the p0 rate to .7 from some lower value. This rating
inflation makes the poor wines seem better than they are, and by comparison the good wines
seem worse. From the data, we can’t tell which class is which under these model assumptions
and with this data. However, the MCMC results will show us a multi-model distribution.

[I’m not sure we can ignore t, because the rows of data create the likelihood. Need to test this
with real data using the simulator]

7 Overdispersion

The tap model assumes fixed averages over raters and subjects for the three parameters.
The most sensible of these assumptions is that there is a single value for 𝑡 that represents
the fraction of Class 1 cases, although this idea has been challenged by @???. That leaves
two parameters that are certainly oversimplified in the tap model, so that counts of Class 1
ratings per subject are likely to have more variance than a binomial model would. This is
due to anticipated variance in rater ability and the difficulty in rating subjects, resulting in
overdispersion. A general approach to this problem is to allow each rater to have a different
accuracy rate 𝑎𝑗 and each subject to have a different guessing rate 𝑝𝑖. This is the hierarchical
model, which is described later.

Original suggestion to use beta-binomial @williams1975394, modern look at it in @as-
cari2021new.

8 Other Properties

As is shown in Appendix A, rater accuracy 𝑎 is proportional to the correlation between the true
and assigned classifications. If 𝐶 is the true classification and 𝑇 is the assigned classification,
then

Cor(𝑇 , 𝐶) = 𝑎𝜎𝑇
𝜎𝐶

13

The t-a-p model focuses on raters more than subjects. For example, some rater models include
a difficulty parameter for each subject, assuming that some are harder to classify than others.
The t-a-p model does not include this, per se, but a random-effects version of the model
is introduced later that allows for subject-specific coefficients 𝑝𝑖, which adjusts the guessing
rate per subject when a classification is made inaccurately. See @paun2018comparing for a
discussion of difficulty parameters in machine-learning models similar to tap.

14

	Introduction
	Conditional Probabilities
	Binomial Mixtures
	Simulation
	Fitting the Model
	Indentifiability
	Overdispersion
	Other Properties

